Axiomatizing modal fixpoint logics

Yde Venema
http://staff.science.uva.nl/~yde

Tehran, 20 september 2016

(largely joint work with Enqvist, Seifan, Santocanale, Schröder, ...)
Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic
Modal Fixpoint Logics

- **Modal fixpoint languages** extend basic modal logic with either
 - new fixpoint connectives such as \(\langle \ast \rangle, U, C, \ldots \) \(\leadsto \) LTL, CTL, PDL
 - explicit fixpoint operators \(\mu x, \nu x \leadsto \mu ML \)
Modal Fixpoint Logics

- **Modal fixpoint languages** extend basic modal logic with either
 - new **fixpoint connectives** such as $\langle * \rangle$, U, C, $\ldots \leadsto$ LTL, CTL, PDL
 - explicit **fixpoint operators** μx, $\nu x \leadsto \mu ML$

- **Motivation 1**: increase expressive power
 - e.g. enable specification of ongoing behaviour

- **Motivation 2**: generally nice computational properties

Combined: many applications in process theory, epistemic logic, etc.

Interesting mathematical theory:
- interesting mix of algebraic | coalgebraic features & combinatorics
- connections with theory of automata on infinite objects
- intuitive game-theoretical semantics
- interesting meta-logic
Modal Fixpoint Logics

- **Modal fixpoint languages** extend basic modal logic with either
 - new fixpoint connectives such as \(\langle * \rangle \), \(U \), \(C \), \ldots \(\leadsto \) LTL, CTL, PDL
 - explicit fixpoint operators \(\mu x \), \(\nu x \) \(\leadsto \) \(\mu \text{ML} \)

- **Motivation 1:** increase expressive power
 - e.g. enable specification of ongoing behaviour

- **Motivation 2:** generally nice computational properties
Modal Fixpoint Logics

- **Modal fixpoint languages** extend basic modal logic with either
 - new fixpoint connectives such as $\langle \ast \rangle$, U, C, ... \leadsto LTL, CTL, PDL
 - explicit fixpoint operators μx, $\nu x \leadsto \mu ML$
- **Motivation 1**: increase expressive power
 - e.g. enable specification of ongoing behaviour
- **Motivation 2**: generally nice computational properties
- Combined: many applications in process theory, epistemic logic, ...
Modal Fixpoint Logics

- **Modal fixpoint languages** extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$, U, C, \ldots \sim LTL, CTL, PDL
 - explicit fixpoint operators μx, $\nu x \sim \mu ML$

- **Motivation 1**: increase expressive power
 - e.g. enable specification of ongoing behaviour

- **Motivation 2**: generally nice computational properties

- Combined: many applications in process theory, epistemic logic, \ldots

- **Interesting mathematical theory**:
 - interesting mix of algebraic|coalgebraic features & combinatorics
 - connections with theory of automata on infinite objects
 - intuitive game-theoretical semantics
 - interesting meta-logic
General Program

Understand modal fixpoint logics by studying the interaction between

- combinatorial
- algebraic and
- coalgebraic

aspects

Here: consider axiomatization problem
Axiomatization of fixpoints

Least fixpoint $\mu p. \varphi$ should be axiomatized by
Axiomatization of fixpoints

Least fixpoint $\mu p. \varphi$ should be axiomatized by

- a least (pre-)fixpoint axiom:

$$\varphi(\mu p. \varphi) \vdash \mu p. \varphi$$

- Park's induction rule

$$\frac{\varphi(\psi) \vdash \varphi}{\mu p. \varphi \vdash \psi}$$

(Here $\alpha \vdash_{K} \beta$ abbreviates $\vdash_{K} \alpha \rightarrow \beta$)
Axiomatization results for modal fixpoint logics

- LTL: Gabbay et alii (1980)
- μML (aconjunctive fragment): Kozen (1983)
- CTL: Emerson & Halpern (1985)
- μML: Walukiewicz (1993/2000)
- CTL*: Reynolds (2000)
- LTL/CTL uniformly: Lange & Stirling (2001)
- common knowledge logics: various
- ...
Axiomatization results for modal fixpoint logics

▶ LTL: Gabbay et alii (1980)
▶ PDL: Kozen & Parikh (1981)
▶ μML (aconjunctive fragment): Kozen (1983)
▶ CTL: Emerson & Halpern (1985)
▶ μML: Walukiewicz (1993/2000)
▶ CTL*: Reynolds (2000)
▶ LTL/CTL uniformly: Lange & Stirling (2001)
▶ common knowledge logics: various
▶ ...

So what is the problem?
Questions (2015)

- How to prove completeness for new fixpoint logics?
- How to transfer known results to restricted frame classes?
- How to transfer known results to similar logics e.g. the monotone μ-calculus?
- Does completeness transfer to fragments of μML? (Ex: game logic)
- What about proof theory?
- ...
Axiomatization problem

Questions (2015)

- How to prove completeness for new fixpoint logics?
- How to transfer known results to restricted frame classes?
- How to transfer known results to similar logics e.g. the monotone μ-calculus?
- Does completeness transfer to fragments of μML? (Ex: game logic)
- What about proof theory?
- . . .

Compared to basic modal logic

- there are no sweeping general results such as Sahlqvist’s theorem
Axiomatization problem

Questions (2015)

- How to prove completeness for new fixpoint logics?
- How to transfer known results to restricted frame classes?
- How to transfer known results to similar logics e.g. the monotone μ-calculus?
- Does completeness transfer to fragments of μML? (Ex: game logic)
- What about proof theory?
- . . .

Compared to basic modal logic

- there are no sweeping general results such as Sahlqvist’s theorem
- there is no comprehensive completeness theory (duality, canonicity, filtration, . . .)
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Obstacle 1: computational danger zone

Example
Obstacle 1: computational danger zone

Example

- Language: \diamond_R, \diamond_U
Obstacle 1: computational danger zone

Example

- Language: \diamond_R, \diamond_U
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
 - $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$
 - $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$
Obstacle 1: computational danger zone

Example

- **Language**: \Diamond_R, \Diamond_U
- **Intended Semantics**: $\mathbb{N} \times \mathbb{N}$
 - $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$
 - $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$
- **Logic** $K_G := K +$
 - **functionality**: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - **confluence**: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$

K_G is sound and complete with respect to its Kripke frames.

Add master modality, $\langle \ast \rangle p := \mu x. p \lor \Diamond_R x \lor \Diamond_U x$

μK_G is sound but incomplete with respect to its Kripke frames.

Proof: Use recurrent tiling problem to show that

the $\Diamond_R, \Diamond_U, \langle \ast \rangle$-logic of $Fr(K_G)$ is not recursively enumerable.
Example

► Language: \diamond_R, \diamond_U

► Intended Semantics: $\mathbb{N} \times \mathbb{N}$

► $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$

► $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$

► Logic $KG := K +$

► functionality: $\diamond_R p \leftrightarrow \Box_R p$ and $\diamond_U p \leftrightarrow \Box_U p$

► confluence: $\diamond_R \Box_U p \rightarrow \Box_U \diamond_R p$

► KG is sound and complete with respect to its Kripke frames
Obstacle 1: computational danger zone

Example

► Language: \Diamond_R, \Diamond_U

► Intended Semantics: $\mathbb{N} \times \mathbb{N}$

 ► $(m, n) R (m', n')$ iff $m' = m + 1$ and $n' = n$

 ► $(m, n) U (m', n')$ iff $m' = m$ and $n' = n + 1$

► Logic $KG := K +$

 ► functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$

 ► confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$

► KG is sound and complete with respect to its Kripke frames

► Add master modality, $\langle \ast \rangle p := \mu x. p \lor \Diamond_R x \lor \Diamond_U x$
Obstacle 1: computational danger zone

Example

- **Language:** \Diamond_R, \Diamond_U
- **Intended Semantics:** $\mathbb{N} \times \mathbb{N}$
 - $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$
 - $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$
- **Logic** $K_G := K +$
 - **functionality:** $\Diamond_R p \leftrightarrow \square_R p$ and $\Diamond_U p \leftrightarrow \square_U p$
 - **confluence:** $\Diamond_R \square_U p \rightarrow \square_U \Diamond_R p$
- **K_G is sound and complete with respect to its Kripke frames**
- **Add master modality,** $\langle * \rangle p := \mu x.p \lor \Diamond_R x \lor \Diamond_U x$
- **μK_G is sound but incomplete** with respect to its Kripke frames
 - **Proof:**
Obstacle 1: computational danger zone

Example

- **Language**: \Diamond_R, \Diamond_U
- **Intended Semantics**: $\mathbb{N} \times \mathbb{N}$
 - $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$
 - $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$
- **Logic** $KG := K +$
 - **functionality**: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - **confluence**: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
- **KG is sound and complete with respect to its Kripke frames**
- **Add master modality**, $\langle \ast \rangle p := \mu x. p \lor \Diamond_R x \lor \Diamond_U x$
- **μKG is sound but incomplete** with respect to its Kripke frames
 - **Proof**: Use recurrent tiling problem to show that
Obstacle 1: computational danger zone

Example

► Language: \Diamond_R, \Diamond_U
► Intended Semantics: $\mathbb{N} \times \mathbb{N}$
 - $(m, n)R(m', n')$ iff $m' = m + 1$ and $n' = n$
 - $(m, n)U(m', n')$ iff $m' = m$ and $n' = n + 1$
► Logic $KG := K +$
 - functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
► KG is sound and complete with respect to its Kripke frames
► Add master modality, $\langle \ast \rangle p := \mu x. p \lor \Diamond_R x \lor \Diamond_U x$
► μKG is sound but incomplete with respect to its Kripke frames
 - Proof: Use recurrent tiling problem to show that
 - the $\Diamond_R, \Diamond_U, \langle \ast \rangle$-logic of $Fr(KG)$ is not recursively enumerable
Example: \(\langle * \rangle p := \bigvee_{n \in \omega} \Box^n p \)

\(\{\langle * \rangle p\} \cup \{\Box^n \neg p \mid n \in \omega\} \) is finitely satisfiable but not satisfiable
Obstacle 2: compactness failure

▶ Example: \(\langle * \rangle p := \bigvee_{n \in \omega} \diamond^n p \)

 ▶ \(\{ \langle * \rangle p \} \cup \{ \square^n \neg p \mid n \in \omega \} \) is finitely satisfiable but not satisfiable

▶ Fixpoint logics have no nice Stone-based duality
Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
 - ν-fixpoints may be unfolded infinitely often
 - μ-fixpoints may only be unfolded finitely often
Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
 - ν-fixpoints may be unfolded infinitely often
 - μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph
Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
 - ν-fixpoints may be unfolded infinitely often
 - μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph
- obstacle 3a: conjunctions cause trace proliferation
Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
 - ν-fixpoints may be unfolded infinitely often
 - μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph
- obstacle 3a: conjunctions cause trace proliferation
- obstacle 3b: fixpoint alternations cause intricate combinatorics
What to do?

▶ consider simple frame conditions only (if at all)
▶ restrict language to fixpoints of simple formulas (avoid alternation)
▶ allow alternation, but develop suitable combinatorial framework
What to do?

- consider simple frame conditions only (if at all)
What to do?

- consider *simple frame conditions only* (if at all)
- restrict language to *fixpoints of simple formulas* (avoid alternation)
What to do?

- consider simple frame conditions only (if at all)
- restrict language to fixpoints of simple formulas (avoid alternation)
- allow alternation, but develop suitable combinatorical framework
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p. \varphi) \vdash_{K} \mu p. \varphi$
- if $\varphi(\psi) \vdash_{K} \varphi$ then $\mu p. \varphi \vdash_{K} \psi$

$(\alpha \vdash_{K} \beta$ abbreviates $\vdash_{K} \alpha \rightarrow \beta)$
Completeness

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_K \mu p.\varphi$
- if $\varphi(\psi) \vdash_K \varphi$ then $\mu p.\varphi \vdash_K \psi$

Theorem (Kozen 1983)

\vdash_K is sound, and complete for a conjunctive formulas.
Completeness

Kozen Axiomatisation:
- complete calculus for modal logic
- $\varphi(\mu p. \varphi) \vdash_{\mathcal{K}} \mu p. \varphi$
- if $\varphi(\psi) \vdash_{\mathcal{K}} \varphi$ then $\mu p. \varphi \vdash_{\mathcal{K}} \psi$

Theorem (Kozen 1983)
$\vdash_{\mathcal{K}}$ is sound, and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
$\vdash_{\mathcal{K}}$ is sound and complete for all formulas.
Our Aim

- understand general principles underlying completeness for μML
- integrate Kozen-Walukiewicz Theorem in theory of modal logic
- generalise completeness theorem to wider setting
Walukiewicz’ Proof: Evaluation

Why is Walukiewicz’ proof hard?
Walukiewicz’ Proof: Evaluation

Why is Walukiewicz’ proof hard?

1. complex combinatorics of traces
2. incorporate simulation theorem into derivations
3. mix of \(\vdash_k \)-derivations, tableaux and automata
4. tableau rules for boolean connectives complicate combinatorics
5. . . .
Why is Walukiewicz’ proof hard?

1. complex combinatorics of traces
2. incorporate simulation theorem into derivations
3. mix of \vdash_K-derivations, tableaux and automata
4. tableau rules for boolean connectives complicate combinatorics
5. ...

content vs wrapping
Our Approach: Principles

- separate the combinatorics from the dynamics
- focus on automata rather than formulas
- make traces first-class citizens
Our Approach: Principles

Dynamics: coalgebra
- one step at a time
- absorb booleans into one-step rules

Combinatorics: trace management
- use binary relations to deal with trace combinatorics

Automata
- uniform, 'clean' presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem
- bring automata into proof theory
Dynamics: coalgebra

- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”
Our Approach: Principles

Dynamics: coalgebra
- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management
- use binary relations to deal with trace combinatorics
Our Approach: Principles

Dynamics: coalgebra
- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management
- use binary relations to deal with trace combinatorics

Automata
- uniform, ‘clean’ presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem
Our Approach: Principles

Dynamics: coalgebra
- one step at a time
- absorb booleans into one-step rules
- Reformulate general question in terms of “one-step completeness + Kozen axiomatisation”

Combinatorics: trace management
- use binary relations to deal with trace combinatorics

Automata
- uniform, ‘clean’ presentation of fixpoint formulas
- excellent framework for developing trace theory
- direct formulation of simulation theorem
- bring automata into proof theory
Theorem (Enqvist, Seifan & YV)
There are maps $\mathbb{B}_- : \mu\text{ML} \rightarrow \text{Aut}(\text{ML}_1)$ and $\xi : \text{Aut}(\text{ML}_1) \rightarrow \mu\text{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_\varphi$ and $A \equiv \xi(A)$
Theorem (Enqvist, Seifan & YV)
There are maps $\mathbb{B} : \mu \text{ML} \to \text{Aut}(\text{ML}_1)$ and $\xi : \text{Aut}(\text{ML}_1) \to \mu \text{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}\varphi$ and $A \equiv \xi(A)$
(2) satisfy $\varphi \equiv_{K} \xi(\mathbb{B}\varphi)$;

As a corollary, we may apply proof-theoretic concepts to automata
Theorem (Enqvist, Seifan & YV)

There are maps $\mathcal{B}_\cdot : \mu ML \to \text{Aut}(ML_1)$ and $\xi : \text{Aut}(ML_1) \to \mu ML$ that

1. preserve meaning: $\varphi \equiv \mathcal{B}_\varphi$ and $A \equiv \xi(A)$
2. satisfy $\varphi \equiv_K \xi(\mathcal{B}_\varphi)$;
3. interact nicely with Booleans, modalities, fixpoints, and substitution:

$$\xi(A[\mathcal{B}/x]) \equiv_K \xi(A)[\xi(\mathcal{B})/x].$$
Automata & Formulas

Theorem (Enqvist, Seifan & YV)
There are maps $\mathbb{B}_- : \mu ML \to \text{Aut}(ML_1)$ and $\xi : \text{Aut}(ML_1) \to \mu ML$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_\varphi$ and $A \equiv \xi(A)$
(2) satisfy $\varphi \equiv_K \xi(\mathbb{B}_\varphi)$;
(3) interact nicely with Booleans, modalities, fixpoints, and substitution:

$$\xi(A[\mathbb{B}/x]) \equiv_K \xi(A)[\xi(\mathbb{B})/x].$$

As a corollary, we may apply proof-theoretic concepts to automata
Games for Automata

Satisfiability Game $S(A)$ (Fontaine, Leal & YV 2010)

- basic positions: binary relations $R \in P(A \times A)$
- R corresponds to $\bigwedge \{\Theta(a) \mid a \in R\}$
- direct representation of A-traces through $R_0 R_1 \cdots$
- \exists wins $S(A)$ iff $L(A) \neq \emptyset$
Games for Automata

Satisfiability Game $S(\mathbb{A})$ (Fontaine, Leal & YV 2010)
- basic positions: binary relations $R \in P(A \times A)$
- R corresponds to $\bigwedge \{ \Theta(a) \mid a \in R \}$
- direct representation of \mathbb{A}-traces through $R_0 R_1 \cdots$
- \exists wins $S(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

Consequence Game $C(\mathbb{A}, \mathbb{A}')$
- basic positions: pair of binary relations (R, R')
- winning condition in terms of trace reflection
- $\mathbb{A} \models_G \mathbb{A}'$ indicates a tight structural link between \mathbb{A} and \mathbb{A}'
- $\mathbb{A} \models_G \mathbb{A}'$ implies $L(\mathbb{A}) \subseteq L(\mathbb{A}')$
Satisfiability Game $S(\mathbb{A})$ (Fontaine, Leal & YV 2010)
- basic positions: binary relations $R \in P(A \times A)$
- R corresponds to $\bigwedge\{\Theta(a) \mid a \in R\}$
- direct representation of \mathbb{A}-traces through $R_0 R_1 \cdots$
- \exists wins $S(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

Consequence Game $C(\mathbb{A}, \mathbb{A}')$
- basic positions: pair of binary relations (R, R')
- winning condition in terms of trace reflection
- $\mathbb{A} \models_G \mathbb{A}'$ indicates a tight structural link between \mathbb{A} and \mathbb{A}'
- $\mathbb{A} \models_G \mathbb{A}'$ implies $L(\mathbb{A}) \subseteq L(\mathbb{A}')$ but not vice versa
Special Automata

Modal Automaton: $\mathbb{A} = \langle A, \Theta, \Omega, a_I \rangle$, with $\Theta : A \to \text{ML}_1(P, A)$

- $\text{Latt}(A) \pi ::= p | \pi \lor \pi | \bot | \pi \land \pi | \top$
- $\text{ML}_1(P, A) \alpha ::= p | \neg p | \Diamond \alpha | \Box \alpha | \alpha \lor \alpha | \bot | \alpha \land \alpha | \top$
Special Automata

Modal Automaton: \(\mathbb{A} = \langle A, \Theta, \Omega, a_I \rangle \), with \(\Theta : A \to ML_1(P, A) \)

- \(Latt(A) \pi ::= p \mid \pi \lor \pi \mid \bot \mid \pi \land \pi \mid \top \)
- \(ML_1(P, A) \alpha ::= p \mid \neg p \mid \diamond \alpha \mid \square \alpha \mid \alpha \lor \alpha \mid \bot \mid \alpha \land \alpha \mid \top \)

Disjunctive Automaton \(\Theta : A \to ML_1^d(P, A) \)

- \(List(P) \pi ::= \bot \mid \top \mid p \land \pi \mid \neg p \land \pi \)
- \(ML_1^d(P, A) \alpha ::= \bot \mid \top \mid \pi \land \nabla B \mid \alpha \lor \alpha, \)

where \(B \subseteq A \) and \(\nabla B ::= \bigwedge \diamond B \land \square \lor B. \)
Special Automata

Modal Automaton: $\mathbb{A} = \langle A, \Theta, \Omega, a_I \rangle$, with $\Theta : A \rightarrow \text{ML}_1(P, A)$
- $\text{Latt}(A)\!$ $\pi ::= p \mid \pi \lor \pi \mid \bot \mid \pi \land \pi \mid \top$
- $\text{ML}_1(P, A)\!$ $\alpha ::= p \mid \neg p \mid \Diamond \alpha \mid \Box \alpha \mid \alpha \lor \alpha \mid \bot \mid \alpha \land \alpha \mid \top$

Disjunctive Automaton $\Theta : A \rightarrow \text{ML}_1^d(P, A)$
- $\text{List}(P)\!$ $\pi ::= \bot \mid \top \mid p \land \pi \mid \neg p \land \pi$
- $\text{ML}_1^d(P, A)\!$ $\alpha ::= \bot \mid \top \mid \pi \land \nabla B \mid \alpha \lor \alpha$, where $B \subseteq A$ and $\nabla B ::= \bigwedge \Diamond B \land \Box \bigvee B$.

Semi-disjunctive Automaton $\Theta(a) \in \text{ML}_1^{s,C}(P, A)$
- $\text{List}(P)\!$ $\pi ::= \bot \mid \top \mid p \land \pi \mid \neg p \land \pi$
- $\text{ML}_1^{s,C}(P, A)\!$ $\alpha ::= \bot \mid \top \mid \pi \land \nabla \{ \bigwedge B \mid B \in B \} \mid \alpha \lor \alpha$, where for all $B \in B$, all $b, b' \in B$ with $b \neq b'$, b or b' is a maximal even element of C.
Key Lemmas

Strong Simulation Theorem (cf W39)
For every modal automaton \mathcal{A} there is an equivalent disjunctive simulation $\overline{\mathcal{A}}$ such that

$$
\mathcal{A} \models_G \overline{\mathcal{A}} \\
\overline{\mathcal{A}} \models_G \mathcal{A} \\
\mathcal{B}[\overline{\mathcal{A}}/x] \models_G \mathcal{B}[\mathcal{A}/x]
$$

for all automata \mathcal{B}.

Lemma (cf W36)
Let \mathcal{A}, \mathcal{B} be respectively a semidisjunctive and an arbitrary automaton. If $\mathcal{A} \models_G \mathcal{B}$, then $\mathcal{A} \land \neg \mathcal{B}$ has a thin refutation.

Lemma (cf Kozen)
If \mathcal{A} is a consistent automaton, then \exists has a winning strategy in S_{thin}.

Corollary If \mathcal{A} is a consistent (semi-)disjunctive automaton, then \mathcal{A} is satisfiable.
Main Proposition
For every $\varphi \in \mu\text{ML}$ there is an equivalent disjunctive automaton D such that

$$\varphi \vdash_K D.$$
Proof of Kozen-Walukiewicz Theorem

Main Proposition
For every $\varphi \in \mu ML$ there is an equivalent disjunctive automaton D such that

$$\varphi \vdash_K D.$$

Proof
Induction on φ
(similar to Walukiewicz’ proof, but using the above lemmas.)
Main Proposition
For every $\varphi \in \mu ML$ there is an equivalent disjunctive automaton D such that

$$\varphi \vdash_K D.$$

Proof
Induction on φ
(similar to Walukiewicz’ proof, but using the above lemmas.)

Completeness for μML is almost immediate from this.
Theorem (Enqvist, Seifan & YV)
Assume that

- \(\mathcal{L} \) is a one-step language with \textit{an adequate disjunctive base}
- \(\mathcal{H} \) is a one-step sound and complete axiomatization for \(\mathcal{L} \)

Then \(\mathcal{H} + \text{Koz} \) is a sound and complete axiomatization for \(\mu\mathcal{L} \).
Theorem (Enqvist, Seifan & YV)
Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathcal{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathcal{H} + Koz$ is a sound and complete axiomatization for $\mu\mathcal{L}$.

Examples:

- linear time μ-calculus
- k-successor μ-calculus
- standard modal μ-calculus
- graded μ-calculus
- monotone modal μ-calculus
- game μ-calculus
- ...
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Fix a basic modal formula $\gamma(x, \bar{p})$, positive in x
Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x

Add a fixpoint connective \sharp_{γ} to the language of ML
(arity of \sharp_{γ} depends on γ but notation hides this)
Fix a basic modal formula $\gamma(x, \bar{p})$, positive in x

Add a fixpoint connective \sharp_γ to the language of ML

(arity of \sharp_γ depends on γ but notation hides this)

Example: $Upq := \mu x. p \lor (q \land \Box x)$,

now: $Upq := \sharp_\gamma(p, q)$ with $\gamma = p \lor (q \land \Box x)$

Intended reading: $\sharp_\gamma(\bar{\varphi}) \equiv \mu x. \gamma(x, \bar{\varphi})$ for any $\bar{\varphi} = (\varphi_1, \ldots, \varphi_n)$.
Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x

Add a fixpoint connective \sharp_γ to the language of ML

(arity of \sharp_γ depends on γ but notation hides this)

Example: $Upq := \mu x. p \lor (q \land \Box x)$,
now: $Upq := \sharp_\gamma(p, q)$ with $\gamma = p \lor (q \land \Box x)$

Intended reading: $\sharp_\gamma(\vec{\varphi}) \equiv \mu x. \gamma(x, \vec{\varphi})$ for any $\vec{\varphi} = (\varphi_1, \ldots, \varphi_n)$.

Obtain language ML_γ:

$$\varphi ::= p \mid \neg p \mid \bot \mid T \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \sharp_\gamma(\vec{\varphi})$$
Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \bar{p})$, positive in x
- Add a fixpoint connective $\#_\gamma$ to the language of ML
 (arity of $\#_\gamma$ depends on γ but notation hides this)
- Example: $Upq := \mu x. p \lor (q \land \Box x)$,
 now: $Upq := \#_\gamma(p, q)$ with $\gamma = p \lor (q \land \Box x)$
- Intended reading: $\#_\gamma(\bar{\varphi}) \equiv \mu x. \gamma(x, \bar{\varphi})$ for any $\bar{\varphi} = (\varphi_1, \ldots, \varphi_n)$.
- Obtain language ML_γ:

$$\varphi ::= p \mid \neg p \mid \bot \mid T \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \Diamond i\varphi \mid \Box i\varphi \mid \#_\gamma(\bar{\varphi})$$

- Examples: CTL, LTL, (PDL), common knowledge, ATL, …
Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \emptyset, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,
 $\langle R \rangle : \wp(S) \rightarrow \wp(S)$ given by
 $\langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$
Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+: = \langle \wp(S), \emptyset, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,
 $\langle R \rangle: \wp(S) \to \wp(S)$ given by
 $\langle R \rangle(X) := \{s \in S \mid Rst \text{ for some } t \in X\}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function
 $\varphi^S: \wp(S)^n \to \wp(S)$.
- γ positive in x, hence γ^S order preserving in x.
Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.

Complex algebra: $S^+ := \langle \wp(S), \emptyset, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,
$\langle R \rangle : \wp(S) \to \wp(S)$ given by
$\langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$

Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function
$\varphi^S : \wp(S)^n \to \wp(S)$.

γ positive in x, hence γ^S order preserving in x.

By Knaster-Tarski we may define $\#^S : \wp(S)^n \to \wp(S)$ by
$\#^S(\vec{B}) := \text{LFP.}\gamma^S(-, \vec{B})$.
Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \emptyset, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,
 $\langle R \rangle : \wp(S) \to \wp(S)$ given by
 $\langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function
 $\varphi^S : \wp(S)^n \to \wp(S)$.
- γ positive in x, hence γ^S order preserving in x.
- By Knaster-Tarski we may define $\#^S : \wp(S)^n \to \wp(S)$ by
 $\#^S(\vec{B}) := \text{LFP}.\gamma^S(\vec{-}, \vec{B})$.
- Kripke $\#$-algebra $S^\# := \langle \wp(S), \emptyset, S, \sim_S, \cup, \cap, \langle R \rangle, \#^S \rangle$.
Candidate Axiomatization

\[\mathbb{K}_\gamma := \mathbb{K} \text{ extended with} \]

- **prefixpoint axiom:**
 \[\gamma(\#(\varphi), \varphi) \vdash \#(\varphi) \]

- **Park’s induction rule:**
 from \(\gamma(\psi, \varphi) \vdash \psi \) infer \(\#_\gamma(\varphi) \vdash \psi \).
Flat Modal Fixpoint Logics: Algebraic completeness proof

$\text{A} = \langle \text{A}, \perp, \top, \neg, \land, \lor, \exists, \#$ \rangle$ with $\# : \text{A} \rightarrow \text{A}$ satisfying $\#(\vec{b}) = \text{LFP}_{\vec{b}}$, where $\gamma_{\text{A}}(\vec{b}) : \text{A} \rightarrow \text{A}$ is given by $\gamma_{\text{A}}(\vec{b})(a) = \gamma_{\text{A}}(a, \vec{b})$.

Axiomatically: modal $\#$-algebras satisfy

$\gamma(\#(\vec{y}), \vec{y}) \leq \#(\vec{y})$

if $\gamma(x, \vec{y}) \leq x$ then $\#(\vec{y}) \leq x$.

Completeness for flat fixpoint logics: $\text{Equ}(\text{MA} \#) = \text{Equ}(\text{KA} \#)$

Two key concepts:

- constructiveness
- O-adjointness
Modal $\#$-algebra: $A = \langle A, \perp, \top, \neg, \land, \lor, \diamond, \# \rangle$ with $\#: A^n \to A$ satisfying
\[
\#(\vec{b}) = \text{LFP}.\gamma^A_{\vec{b}},
\]
where $\gamma^A_{\vec{b}} : A \to A$ is given by $\gamma^A_{\vec{b}}(a) := \gamma^A(a, \vec{b})$.
Flat Modal Fixpoint Logics: Algebraic completeness proof

- **Modal $\#$-algebra:** $A = \langle A, \bot, \top, \neg, \land, \lor, \Diamond, \# \rangle$ with $\# : A^n \to A$
satisfying

$$\#(\vec{b}) = \text{LFP}.\gamma^A_{\vec{b}},$$

where $\gamma^A_{\vec{b}} : A \to A$ is given by $\gamma^A_{\vec{b}}(a) := \gamma^A(a, \vec{b}).$

- **Axiomatically:** modal $\#$-algebras satisfy
 - $\gamma(\#(\vec{y}), \vec{y}) \leq \#(\vec{y})$
 - if $\gamma(x, \vec{y}) \leq x$ then $\#(\vec{y}) \leq x.$

- **Completeness for flat fixpoint logics:** $\text{Equ}(\text{MA}_\#) \equiv \text{Equ}(\text{KA}_\#)$
Flat Modal Fixpoint Logics: Algebraic completeness proof

- **Modal ♯-algebra:** $A = \langle A, \bot, \top, \neg, \land, \lor, \Diamond, \# \rangle$ with $\# : A^n \rightarrow A$
 satisfying

 $$\#(\vec{b}) = \text{LFP} \cdot \gamma^A_{\vec{b}},$$

 where $\gamma^A_{\vec{b}} : A \rightarrow A$ is given by $\gamma^A_{\vec{b}}(a) := \gamma^A(a, \vec{b})$.

- **Axiomatically:** modal ♯-algebras satisfy
 - $\gamma(\#(\vec{y}), \vec{y}) \leq \#(\vec{y})$
 - if $\gamma(x, \vec{y}) \leq x$ then $\#(\vec{y}) \leq x$.

- **Completeness for flat fixpoint logics:** $\text{Equ}(\text{MA}_\#) \equiv \text{Equ}(\text{KA}_\#)$

- **Two key concepts:**
 - constructiveness
 - \mathcal{O}-adjointness
An $\text{MA}_\#_\#$-algebra \mathcal{A} is constructive if

$$\#(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_b(\bot).$$
Constructiveness

An MA_♯-algebra A is constructive if

$$\#(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_b(\bot).$$

Note: we do not require A to be complete!
Constructiveness

- An MA_{♯}-algebra △ is **constructive** if

\[\#(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_b(\bot). \]

Note: we do not require △ to be complete!

Theorem (Santocanale & Venema)
Let A be a countable, residuated, modal ♯-algebra.
If A is constructive, then A can be embedded in a Kripke ♯-algebra.
Constructiveness

An $\text{MA}_\#$-algebra \mathbb{A} is constructive if

$$\#(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_b(\bot).$$

Note: we do not require \mathbb{A} to be complete!

Theorem (Santocanale & Venema)

Let A be a countable, residuated, modal $\#$-algebra.
If A is constructive, then A can be embedded in a Kripke $\#$-algebra.

Proof

Let $f : (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.
Let $f : (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g : Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$
Let $f : (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g : Q \rightarrow P$ with
 \[fp \leq q \iff p \leq gq. \]

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_f : Q \rightarrow \wp(\mathcal{O}P)$ with
 \[fp \leq q \iff p \leq y \text{ for some } y \in G_f q. \]
\(\mathcal{O}\)-adjoints

Let \(f : (P, \leq) \rightarrow (Q, \leq)\) be an order-preserving map.

- \(f\) is a (left) adjoint or residuated if it has a residual \(g : Q \rightarrow P\) with
 \[fp \leq q \iff p \leq gq.\]

- \(f\) is a (left) \(\mathcal{O}\)-adjoint if it has an \(\mathcal{O}\)-residual \(G_f : Q \rightarrow \wp(\omega(P))\) with
 \[fp \leq q \iff p \leq y\] for some \(y \in G_f q\).

Proposition (Santocanale 2005)

- \(f\) is a left adjoint iff \(f\) is a join-preserving \(\mathcal{O}\)-adjoint
\mathcal{O}-adjoints

Let $f : (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g : Q \rightarrow P$ with
 \[fp \leq q \iff p \leq gq. \]

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_f : Q \rightarrow \wp_\omega(P)$ with
 \[fp \leq q \iff p \leq y \text{ for some } y \in G_f q. \]

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving \mathcal{O}-adjoint
- \mathcal{O}-adjoints are Scott continuous
Let \(f : (P, \leq) \to (Q, \leq) \) be an order-preserving map.

- \(f \) is a (left) adjoint or residuated if it has a residual \(g : Q \to P \) with
 \[
 fp \leq q \iff p \leq gq.
 \]

- \(f \) is a (left) \(\mathcal{O} \)-adjoint if it has an \(\mathcal{O} \)-residual \(G_f : Q \to \wp(\omega(P)) \) with
 \[
 fp \leq q \iff p \leq y \text{ for some } y \in G_f q.
 \]

Proposition (Santocanale 2005)

- \(f \) is a left adjoint iff \(f \) is a join-preserving \(\mathcal{O} \)-adjoint
- \(\mathcal{O} \)-adjoints are Scott continuous
- \(\land \) is continuous but not an \(\mathcal{O} \)-adjoint.
Finitary \mathcal{O}-adjoints

Let $f : A^n \to A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

Theorem (Santocanale 2005)
If $f : A^n \to A$ is a finitary \mathcal{O}-adjoint, then LFP_f, if existing, is constructive.
Finitary \mathcal{O}-adjoints

Let $f : A^n \to A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^n : A \to \wp(A)$

\[
\begin{align*}
G^0(a) & := \{a\} \\
G^{n+1}(a) & := G[G^n(a)]
\end{align*}
\]
Finitary \mathcal{O}-adjoints

Let $f : A^n \rightarrow A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^n : A \rightarrow \wp(\wp^n)$:

 \[
 G^0(a) := \{a\} \quad G^{n+1}(a) := G[G^n(a)]
 \]

- Call f finitary if $G^\omega(a) := \bigcup_{n \in \omega} G^n(a)$ is finite.
Finitary \mathcal{O}-adjoints

Let $f : A^n \to A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^n : A \to \mathcal{P}(A)$

\[
\begin{align*}
G^0(a) & := \{a\} \\
G^{n+1}(a) & := G[G^n(a)]
\end{align*}
\]

- Call f finitary if $G^\omega(a) := \bigcup_{n \in \omega} G^n(a)$ is finite.

Theorem (Santocanale 2005)
If $f : A \to A$ is a finitary \mathcal{O}-adjoint, then $\text{LFP}.f$, if existing, is constructive.
Adjoints on free algebras

Free modal ($\#$-) algebras have many Ω-adjoints!

cf. free distributive lattice are Heyting algebras,

Whitman's rule for free lattices, . . .

Call a modal formula γ untied in x if it belongs to

$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$

where ψ does not contain x

Examples:

$3x, 2x, 3x \land 33x \land 2p, 3x \land 32x \land 2(3x \lor 32x)$, . . .

Counterexamples:

$3(x \land 3x), 3x \land 23x$

Theorem

(Santocanale & YV 2010)

Untied formulas are finitary Ω-adjoints.
Free modal (\Diamond-)algebras have many \mathcal{O}-adjoints!

Examples:
- $3x$, $2x$, $3x \land 33x \land 2p$, $3x \land 32x \land 2(3x \lor 32x)$, . . .

Counterexamples:
- $3(x \land 3x)$, $3x \land 23x$
Free modal (\mathcal{O}-)algebras have many \mathcal{O}-adjoints!

- cf. free distributive lattice are Heyting algebras,
- Examples:
 - $3x$, $2x$, $3x \land 33x \land 2p$, $3x \land 32x \land 2(3x \lor 32x)$, ...
- Counterexamples:
 - $3(x \land 3x)$, $3x \land 23x$.

Theorem (Santocanale & YV 2010)
Untied formulas are finitary \mathcal{O}-adjoints.
Adjoints on free algebras

- Free modal (\mathcal{O}-) algebras have many \mathcal{O}-adjoints!
 - cf. free distributive lattice are Heyting algebras,
 - Whitman’s rule for free lattices, . . .
Free modal (♯-)algebras have many O-adjoints!

- cf. free distributive lattice are Heyting algebras,
- Whitman’s rule for free lattices, . . .

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x
Free modal (\(\#\))-algebras have many \(O\)-adjoints!

- cf. free distributive lattice are Heyting algebras,
- Whitman’s rule for free lattices, . . .

Call a modal formula \(\gamma\) untied in \(x\) if it belongs to

\[
\gamma := x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}
\]

where \(\psi\) does not contain \(x\)

- Examples: \(\Diamond x\), \(\Box x\), \(\Diamond x \land \Diamond \Diamond x \land \Box p\), \(\Diamond x \land \Diamond \Box x \land \Box(\Diamond x \lor \Diamond \Box x)\), . . .
Free modal (♯-)algebras have many O-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, . . .

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x)$, . . .
- Counterexamples: $\Diamond (x \land \Diamond x)$, $\Diamond x \land \Box \Diamond x$
Free modal (\mathcal{H}-)algebras have many \mathcal{O}-adjoints!

- cf. free distributive lattice are Heyting algebras,
- Whitman’s rule for free lattices, . . .

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x)$, . . .
- Counterexamples: $\Diamond (x \land \Diamond x)$, $\Diamond x \land \Box \Diamond x$

Theorem (Santocanale & YV 2010)

Untied formulas are finitary \mathcal{O}-adjoints.
A general result

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x.
A general result

- Call a modal formula γ **untied in x** if it belongs to

$$\gamma ::= x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- Examples: $\diamond x$, $\square x$, $\diamond x \land \diamond \diamond x \land \square p$, $\diamond x \land \diamond \square x \land \square (\diamond x \lor \diamond \square x)$, …
A general result

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Box \Box x \land \Box p$, $\Diamond x \land \Box \Box x \land \Box(\Diamond x \lor \Diamond \Box x)$, \ldots
- Non-examples: $\Diamond(x \land \Diamond x)$, $\Diamond x \land \Box \Diamond x$
A general result

- Call a modal formula γ untied in x if it belongs to

$$
\gamma ::= x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}
$$

where ψ does not contain x

- Examples: $\Box x$, $\Box x$, $\Box x \land \Box x \land \Box p$, $\Box x \land \Box x \land \Box (\Box x \lor \Box x)$, ...

- Non-examples: $\Box (x \land \Box x)$, $\Box x \land \Box x$

Theorem (Santocanale & YV 2010)

Let γ be untied wrt x. Then K_γ is sound and complete wrt its Kripke semantics.
A general result

▶ Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid T \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

▶ Examples: $\diamond x$, $\square x$, $\diamond x \land \diamond \diamond x \land \square p$, $\diamond x \land \diamond \square x \land \square (\diamond x \lor \diamond \square x)$, \ldots

▶ Non-examples: $\diamond (x \land \diamond x)$, $\diamond x \land \square \diamond x$

Theorem (Santocanale & YV 2010)

Let γ be untied wrt x. Then K_γ is sound and complete wrt its Kripke semantics.

Notes
A general result

Call a modal formula γ untied in x if it belongs to

$$
\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla \{\gamma_1, \ldots, \gamma_n\}
$$

where ψ does not contain x

- Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x)$, \ldots
- Non-examples: $\Diamond (x \land \Diamond x)$, $\Diamond x \land \Box \Diamond x$

Theorem (Santocanale & YV 2010)
Let γ be untied wrt x. Then K_γ is sound and complete wrt its Kripke semantics.

Notes
- Santocanale & YV have fully general result for extended axiom system.
A general result

Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla\{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- Examples: $\diamond x$, $\Box x$, $\diamond x \land \diamond x \land \Box p$, $\diamond x \land \diamond \Box x \land \Box (\diamond x \lor \diamond \Box x)$, \ldots
- Non-examples: $\diamond (x \land \diamond x)$, $\diamond x \land \Box \diamond x$

Theorem (Santocanale & YV 2010)
Let γ be untied wrt x. Then K_γ is sound and complete wrt its Kripke semantics.

Notes
- Santocanale & YV have fully general result for extended axiom system.
- Schröder & YV have similar results for wider coalgebraic setting.
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Conjecture Let L be an extension of K_Γ or K_μ with an axiom set Φ such that each $\varphi \in \Phi$

- is canonical
- corresponds to a *universal* first-order frame condition.

Then L is sound and complete for the class of frames satisfying Φ.
Overview

- Introduction
- Obstacles
- Completeness for μML
- Completeness for flat fixpoint logics
- Frame conditions
- Conclusions
Conclusions
Conclusions

- framework for proving completeness for μ-calculi
Conclusions

- framework for proving completeness for μ-calculi
- perspective for bringing automata into proof theory
Conclusions

- framework for proving completeness for μ-calculi
 - perspective for bringing automata into proof theory
 - general completeness result for coalgebraic μ-calculi
Conclusions

- framework for proving completeness for μ-calculi
 - perspective for bringing automata into proof theory
 - general completeness result for coalgebraic μ-calculi
- general completeness result for flat fixpoint logics
Future work

- prove conjecture on frame conditions!
- prove completeness for fragments of μML (game logic!)
 - many μML-fragments have automata-theoretic counterparts!
- interpolation for fixpoint logics (PDL!)
- fixpoint logics on non-boolean basis
 - non-boolean automata?
- proof theory for modal automata
- further explore notion of \mathcal{O}-adjointness
- ...
References

- L. Santocanale & YV. Completeness for flat modal fixpoint logic APAL 2010
- L. Schröder & YV. Completeness for flat coalgebraic fixpoint logic submitted (short version appeared in CONCUR 2010)
- S. Enqvist, F. Seifan & YV. Completeness for the modal μ-calculus: separating the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.

http://staff.science.uva.nl/~yde
THANK YOU!